Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories

Katalin Fazekas

Solving optimization problems with SAT has a long tradition in the form of MaxSAT, which maximizes the weight of satisfied clauses in a propositional formula. The extension to maximum satisfiability modulo theories (MaxSMT) is less mature but allows problems to be formulated in a higher-level language closer to actual applications. In this talk a new approach for solving MaxSMT is described that is based on lifting one of the currently most successful approaches for MaxSAT, the implicit hitting set approach, from the propositional level to SMT. We also provide a unifying view of how optimization, propositional reasoning, and theory reasoning can be combined in a MaxSMT solver. This leads to a generic framework that can be instantiated in different ways, subsuming existing work and supporting new approaches.